HyperAI초신경

Graph Property Prediction On Ogbg Code2

평가 지표

Ext. data
Number of params
Test F1 score
Validation F1 score

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
Ext. data
Number of params
Test F1 score
Validation F1 score
Paper TitleRepository
GCNNo110332100.1507 ± 0.00180.1399 ± 0.0017Semi-Supervised Classification with Graph Convolutional Networks
GATNo110302100.1569 ± 0.00100.1442 ± 0.0017Graph Attention Networks
EGC-M (No Edge Features)No109860020.1595 ± 0.00190.1464 ± 0.0021Do We Need Anisotropic Graph Neural Networks?
SATNo157340000.1937 ± 0.00280.1773 ± 0.0023Structure-Aware Transformer for Graph Representation Learning
DAGNNNo352468140.1751 ± 0.00490.1607 ± 0.0040--
GMAN+bag of tricksNo636842900.1770 ± 0.00120.1631 ± 0.0090--
MPNN-Max (No Edge Features)No109715060.1552 ± 0.00220.1441 ± 0.0016Do We Need Anisotropic Graph Neural Networks?
GPSNo124540660.18940.1739 ± 0.001Recipe for a General, Powerful, Scalable Graph Transformer
DiffPool w/ graphSAGENo100958260.1401 ± 0.00120.1405 ± 0.0012Hierarchical Graph Representation Learning with Differentiable Pooling
SAT++ with Magnetic LaplacianNo143780690.2222 ± 0.00100.2044 ± 0.0020Transformers Meet Directed Graphs
GraphTrans (GCN-Virtual)No90532460.1830 ± 0.00240.1661 ± 0.0012--
PNA (No Edge Features)No109920500.1570 ± 0.00320.1453 ± 0.0025Do We Need Anisotropic Graph Neural Networks?
GIN+virtual nodeNo138418150.1581 ± 0.00260.1439 ± 0.0020How Powerful are Graph Neural Networks?
SAT++ with Magnetic LaplacianNo143780690.2222 ± 0.00320.2044 ± 0.0020--
GINNo123907150.1495 ± 0.00230.1376 ± 0.0016How Powerful are Graph Neural Networks?
EGC-S (No Edge Features)No111565300.1528 ± 0.00250.1427 ± 0.0020Do We Need Anisotropic Graph Neural Networks?
DAGformerNo149528820.2018 ± 0.00210.1846 ± 0.0010--
GraphTrans (GCN)No75637460.1751 ± 0.00150.1599 ± 0.0009--
GCN+virtual nodeNo124843100.1595 ± 0.00180.1461 ± 0.0013Semi-Supervised Classification with Graph Convolutional Networks
DAGNN--0.1751 ± 0.00490.1607 ± 0.0040Directed Acyclic Graph Neural Networks
0 of 21 row(s) selected.