HyperAI
HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
그래프 분류
Graph Classification On Reddit B
Graph Classification On Reddit B
평가 지표
Accuracy
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Accuracy
Paper Title
Repository
CRaWl
93.15
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond Message Passing
-
WEGL
92
Wasserstein Embedding for Graph Learning
-
δ-2-LWL
89.0
Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings
-
GAT-GC (f-Scaled)
92.57
Improving Attention Mechanism in Graph Neural Networks via Cardinality Preservation
-
NDP
84.3
Hierarchical Representation Learning in Graph Neural Networks with Node Decimation Pooling
-
Graph-JEPA
56.73
Graph-level Representation Learning with Joint-Embedding Predictive Architectures
-
GIN-0
92.4
How Powerful are Graph Neural Networks?
-
ApproxRepSet
80.3
Rep the Set: Neural Networks for Learning Set Representations
-
2-WL-GNN
89.4
A Novel Higher-order Weisfeiler-Lehman Graph Convolution
-
GraphSAGE
84.3
A Fair Comparison of Graph Neural Networks for Graph Classification
-
DiffPool
92.1
Fast Graph Representation Learning with PyTorch Geometric
-
0 of 11 row(s) selected.
Previous
Next
Graph Classification On Reddit B | SOTA | HyperAI초신경