Fine Grained Image Classification On Oxford 1
평가 지표
Accuracy
평가 결과
이 벤치마크에서 각 모델의 성능 결과
비교 표
모델 이름 | Accuracy |
---|---|
omnivec2-a-novel-transformer-based-network | 99.6 |
scaling-up-visual-and-vision-language | 96.19% |
autoaugment-learning-augmentation-policies | 88.98% |
transformer-in-transformer | 95.0% |
bamboo-building-mega-scale-vision-dataset | 95.1% |
dinov2-learning-robust-visual-features | 96.7 |
efficientnet-rethinking-model-scaling-for | 95.4% |
omnivec-learning-robust-representations-with | 99.2 |
autoformer-searching-transformers-for-visual | 94.9% |
neural-architecture-transfer | - |
towards-fine-grained-image-classification | 96.28 |
fixing-the-train-test-resolution-discrepancy | 94.8% |
vision-models-are-more-robust-and-fair-when | 85.3% |
fine-grained-visual-classification-via-2 | 95.28% |