HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
세부 이미지 분류
Fine Grained Image Classification On Oxford 1
Fine Grained Image Classification On Oxford 1
평가 지표
Accuracy
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Accuracy
Paper Title
Repository
OmniVec2
99.6
OmniVec2 - A Novel Transformer based Network for Large Scale Multimodal and Multitask Learning
-
ALIGN
96.19%
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
AutoAugment
88.98%
AutoAugment: Learning Augmentation Policies from Data
TNT-B
95.0%
Transformer in Transformer
Bamboo (ViT-B/16)
95.1%
Bamboo: Building Mega-Scale Vision Dataset Continually with Human-Machine Synergy
DINOv2 (ViT-g/14, frozen model, linear eval)
96.7
DINOv2: Learning Robust Visual Features without Supervision
EfficientNet-B7
95.4%
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
OmniVec
99.2
OmniVec: Learning robust representations with cross modal sharing
-
AutoFormer-S | 384
94.9%
AutoFormer: Searching Transformers for Visual Recognition
NAT-M1
-
Neural Architecture Transfer
ViT R26 + S/32 ( Augmented)
96.28
Towards Fine-grained Image Classification with Generative Adversarial Networks and Facial Landmark Detection
FixSENet-154
94.8%
Fixing the train-test resolution discrepancy
SEER (RegNet10B)
85.3%
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
IELT
95.28%
Fine-Grained Visual Classification via Internal Ensemble Learning Transformer
0 of 14 row(s) selected.
Previous
Next