HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 주행 가능 영역 감지
  4. Drivable Area Detection On Bdd100K Val

Drivable Area Detection On Bdd100K Val

평가 지표

Params (M)
mIoU

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
Params (M)
mIoU
Paper TitleRepository
TwinLiteNetPlus-Nano0.0387.3TwinLiteNetPlus: A Real-Time Multi-Task Segmentation Model for Autonomous Driving
TwinLiteNetPlus-Large1.9492.9TwinLiteNetPlus: A Real-Time Multi-Task Segmentation Model for Autonomous Driving
HybridNets12.890.5HybridNets: End-to-End Perception Network
TwinLiteNetPlus-Medium0.4892.0TwinLiteNetPlus: A Real-Time Multi-Task Segmentation Model for Autonomous Driving
YOLOP7.991.5YOLOP: You Only Look Once for Panoptic Driving Perception
TwinLiteNet0.4391.3TwinLiteNet: An Efficient and Lightweight Model for Driveable Area and Lane Segmentation in Self-Driving Cars
TwinLiteNetPlus-Small0.1290.6TwinLiteNetPlus: A Real-Time Multi-Task Segmentation Model for Autonomous Driving
A-YOLOM(s)-91You Only Look at Once for Real-time and Generic Multi-Task
YOLOPv238.993.2YOLOPv2: Better, Faster, Stronger for Panoptic Driving Perception
0 of 9 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili