HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 도메인 적응
  4. Domain Adaptation On Svhn To Mnist

Domain Adaptation On Svhn To Mnist

평가 지표

Accuracy

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
Accuracy
Paper TitleRepository
ADDN80.1Adversarial Discriminative Domain Adaptation
CYCADA90.4CyCADA: Cycle-Consistent Adversarial Domain Adaptation
Mean teacher99.18Self-ensembling for visual domain adaptation
DFA-MCD98.9Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment
DFA-ENT98.2Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment
CDAN89.2Conditional Adversarial Domain Adaptation
CyCleGAN (Light-weight Calibrator)97.5Light-weight Calibrator: a Separable Component for Unsupervised Domain Adaptation
SBADA76.1From source to target and back: symmetric bi-directional adaptive GAN-
FAMCD98.76Unsupervised domain adaptation using feature aligned maximum classifier discrepancy-
SHOT98.9Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
MCD95.8Maximum Classifier Discrepancy for Unsupervised Domain Adaptation
FACT90.6FACT: Federated Adversarial Cross Training
MSTN93.3Learning Semantic Representations for Unsupervised Domain Adaptation-
PFA93.9Progressive Feature Alignment for Unsupervised Domain Adaptation-
0 of 14 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili