HyperAIHyperAI초신경
홈뉴스최신 연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 문서 분류
  4. Document Classification On Reuters 21578

Document Classification On Reuters 21578

평가 지표

F1

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
F1
Paper TitleRepository
MAGNET89.9MAGNET: Multi-Label Text Classification using Attention-based Graph Neural Network
VLAWE89.3Vector of Locally-Aggregated Word Embeddings (VLAWE): A Novel Document-level Representation-
ApproxRepSet-Rep the Set: Neural Networks for Learning Set Representations-
LSTM-reg (single model)87.0Rethinking Complex Neural Network Architectures for Document Classification
REL-RWMD k-NN-Speeding up Word Mover's Distance and its variants via properties of distances between embeddings-
KD-LSTMreg88.9DocBERT: BERT for Document Classification-
SCDV-MS82.71Improving Document Classification with Multi-Sense Embeddings-
Orthogonalized Soft VSM-Text classification with word embedding regularization and soft similarity measure-
0 of 8 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili