HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
깊이 추정
Depth Estimation On Nyu Depth V2
Depth Estimation On Nyu Depth V2
평가 지표
RMS
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
RMS
Paper Title
PAD-Net
0.792
PAD-Net: Multi-Tasks Guided Prediction-and-Distillation Network for Simultaneous Depth Estimation and Scene Parsing
MS-CRF
0.586
Multi-Scale Continuous CRFs as Sequential Deep Networks for Monocular Depth Estimation
DORN
0.509
Deep Ordinal Regression Network for Monocular Depth Estimation
Freeform
0.433
Deep Optics for Monocular Depth Estimation and 3D Object Detection
Optimized, freeform
0.4325
Deep Optics for Monocular Depth Estimation and 3D Object Detection
VNL
0.416
Enforcing geometric constraints of virtual normal for depth prediction
BTS
0.407
From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation
TransDepth (AGD+ ViT)
0.365
Transformer-Based Attention Networks for Continuous Pixel-Wise Prediction
AdaBins
0.364
AdaBins: Depth Estimation using Adaptive Bins
P3Depth
0.356
P3Depth: Monocular Depth Estimation with a Piecewise Planarity Prior
SwinV2-B 1K-MIM
0.304
Revealing the Dark Secrets of Masked Image Modeling
Semantic-aware NN
0.30
3D Ken Burns Effect from a Single Image
SwinV2-L 1K-MIM
0.287
Revealing the Dark Secrets of Masked Image Modeling
DINOv2 (ViT-g/14 frozen, w/ DPT decoder)
0.279
DINOv2: Learning Robust Visual Features without Supervision
EVP
0.224
EVP: Enhanced Visual Perception using Inverse Multi-Attentive Feature Refinement and Regularized Image-Text Alignment
Defocus/DepthNet (Normalized)
-
Focus on defocus: bridging the synthetic to real domain gap for depth estimation
A2J
-
A2J: Anchor-to-Joint Regression Network for 3D Articulated Pose Estimation from a Single Depth Image
0 of 17 row(s) selected.
Previous
Next
Depth Estimation On Nyu Depth V2 | SOTA | HyperAI초신경