HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 밀도 추정
  4. Density Estimation On Cifar 10

Density Estimation On Cifar 10

평가 지표

NLL (bits/dim)

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
NLL (bits/dim)
Paper TitleRepository
DDPM3.69Denoising Diffusion Probabilistic Models
MAF-Masked Autoregressive Flow for Density Estimation
FFJORD3.4FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Flow matching2.99Flow Matching for Generative Modeling
RNODE3.38How to train your neural ODE: the world of Jacobian and kinetic regularization
Pixel CNN3.03Conditional Image Generation with PixelCNN Decoders
VDM2.65Variational Diffusion Models
Pixel CNN ++2.92PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
MULAN2.55Diffusion Models With Learned Adaptive Noise
MRCNF3.54Multi-Resolution Continuous Normalizing Flows
i-DODE2.42Improved Techniques for Maximum Likelihood Estimation for Diffusion ODEs
Image Transformer2.90Image Transformer-
score SDE2.99Score-Based Generative Modeling through Stochastic Differential Equations
BSI2.64Generative Modeling with Bayesian Sample Inference
0 of 14 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili