HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
데이터 증강
Data Augmentation On Imagenet
Data Augmentation On Imagenet
평가 지표
Accuracy (%)
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Accuracy (%)
Paper Title
DeiT-B (+MixPro)
82.9
MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer
ResNet-200 (DeepAA)
81.32
Deep AutoAugment
DeiT-S (+MixPro)
81.3
MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer
ResNet-200 (Fast AA)
80.6
Fast AutoAugment
ResNet-200 (UA)
80.4
UniformAugment: A Search-free Probabilistic Data Augmentation Approach
ResNet-200 (AA)
80.0
AutoAugment: Learning Augmentation Policies from Data
ResNet-50 (DeepAA)
78.30
Deep AutoAugment
ResNet-50 (TA wide)
78.07
TrivialAugment: Tuning-free Yet State-of-the-Art Data Augmentation
ResNet-50 (LoRot-E)
77.72
Tailoring Self-Supervision for Supervised Learning
ResNet-50 (LoRot-I)
77.71
Tailoring Self-Supervision for Supervised Learning
ResNet-50 (UA)
77.63
UniformAugment: A Search-free Probabilistic Data Augmentation Approach
ResNet-50 (RA)
77.6
RandAugment: Practical automated data augmentation with a reduced search space
ResNet-50 (AA)
77.6
AutoAugment: Learning Augmentation Policies from Data
ResNet-50 (Fast AA)
77.6
Fast AutoAugment
ResNet-50 (DADA)
77.5
DADA: Differentiable Automatic Data Augmentation
ResNet-50 (Faster AA)
76.5
Faster AutoAugment: Learning Augmentation Strategies using Backpropagation
DeiT-T (+MixPro)
73.8
MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer
0 of 17 row(s) selected.
Previous
Next
Data Augmentation On Imagenet | SOTA | HyperAI초신경