HyperAIHyperAI초신경
홈뉴스최신 연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 군중 계수
  4. Crowd Counting On Worldexpo10

Crowd Counting On Worldexpo10

평가 지표

Average MAE

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
Average MAE
Paper TitleRepository
IG-CNN11.3Divide and Grow: Capturing Huge Diversity in Crowd Images with Incrementally Growing CNN-
SANet8.2Scale Aggregation Network for Accurate and Efficient Crowd Counting
SPANet7.7Learning Spatial Awareness to Improve Crowd Counting-
MCNN11.6Single-Image Crowd Counting via Multi-Column Convolutional Neural Network
DecideNet9.23DecideNet: Counting Varying Density Crowds Through Attention Guided Detection and Density Estimation-
CAN7.4Context-Aware Crowd Counting-
Switch-CNN9.4Switching Convolutional Neural Network for Crowd Counting-
M-SFANet7.32Encoder-Decoder Based Convolutional Neural Networks with Multi-Scale-Aware Modules for Crowd Counting-
CP-CNN8.9Generating High-Quality Crowd Density Maps using Contextual Pyramid CNNs-
ACSCP7.5Crowd Counting via Adversarial Cross-Scale Consistency Pursuit
Zhang et al.12.9Cross-Scene Crowd Counting via Deep Convolutional Neural Networks-
D-ConvNet9.1Crowd Counting With Deep Negative Correlation Learning-
CSRNet8.6CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes-
ECAN7.2Context-Aware Crowd Counting-
ic-CNN10.3Iterative Crowd Counting-
0 of 15 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili