HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
시스템 설정
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
로그인
로그인
홈
SOTA
Cross Modal Retrieval With Noisy
Cross Modal Retrieval With Noisy 2
Cross Modal Retrieval With Noisy 2
평가 지표
Image-to-text R@1
Image-to-text R@10
Image-to-text R@5
R-Sum
Text-to-image R@1
Text-to-image R@10
Text-to-image R@5
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Image-to-text R@1
Image-to-text R@10
Image-to-text R@5
R-Sum
Text-to-image R@1
Text-to-image R@10
Text-to-image R@5
Paper Title
Repository
CTPR-SGR
76.2
98.3
95.8
508.7
60.5
92.7
85.2
Learning From Noisy Correspondence With Tri-Partition for Cross-Modal Matching
-
CREAM
77.4
97.3
95.0
502.3
58.7
89.8
84.1
Cross-modal Retrieval with Noisy Correspondence via Consistency Refining and Mining
UGNCL
78.4
97.8
95.8
505.6
59.8
89.5
84.3
UGNCL: Uncertainty-Guided Noisy Correspondence Learning for Efficient Cross-Modal Matching
CRCL
77.9
98.3
95.4
507.8
60.9
90.6
84.7
Cross-modal Active Complementary Learning with Self-refining Correspondence
SREM
79.5
97.9
94.2
507.8
61.2
90.2
84.8
Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation
-
GSC-SGR
78.3
97.8
94.6
505.8
60.1
90.5
84.5
Mitigating Noisy Correspondence by Geometrical Structure Consistency Learning
MSCN
77.4
97.6
94.9
501.9
59.6
89.2
83.2
Noisy Correspondence Learning with Meta Similarity Correction
NAC
79.3
97.8
94.6
507.1
60.8
90.1
84.5
NAC: Mitigating Noisy Correspondence in Cross-Modal Matching Via Neighbor Auxiliary Corrector
-
L2RM-SGRAF
77.9
97.8
95.2
503.8
59.8
89.5
83.6
Learning to Rematch Mismatched Pairs for Robust Cross-Modal Retrieval
LNC
76.3
96.9
93.7
498.9
58.4
89.8
83.8
Learning with Noisy Correspondence
-
BiCro*
78.1
97.5
94.4
504.7
60.4
89.9
84.4
BiCro: Noisy Correspondence Rectification for Multi-modality Data via Bi-directional Cross-modal Similarity Consistency
-
REPAIR
79.2
96.9
95.0
504.4
59.4
89.5
84.4
REPAIR: Rank Correlation and Noisy Pair Half-replacing with Memory for Noisy Correspondence
-
ReCon
80.3
97.8
95.3
511.8
61.6
91.3
85.5
ReCon: Enhancing True Correspondence Discrimination through Relation Consistency for Robust Noisy Correspondence Learning
NCR
75.0
97.5
93.9
496.7
58.3
89.0
83.0
Learning with Noisy Correspondence for Cross-modal Matching
DECL-SGRAF
77.5
97.0
93.8
494.7
56.1
88.5
81.8
Deep Evidential Learning with Noisy Correspondence for Cross-Modal Retrieval
RCL-SGR
74.2
96.9
91.8
487.2
55.6
87.5
81.2
Cross-Modal Retrieval with Partially Mismatched Pairs
0 of 16 row(s) selected.
Previous
Next