HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 지속 학습
  4. Continual Learning On Visual Domain Decathlon

Continual Learning On Visual Domain Decathlon

평가 지표

decathlon discipline (Score)

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
decathlon discipline (Score)
Paper TitleRepository
Res. adapt. finetune all2643Learning multiple visual domains with residual adapters
Piggyback2838Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights
Res. adapt.2118Learning multiple visual domains with residual adapters
DAN2851Incremental Learning Through Deep Adaptation-
Res. adapt. decay2621Learning multiple visual domains with residual adapters
NetTailor3744NetTailor: Tuning the Architecture, Not Just the Weights
Res. adapt. dom-pred2503Learning multiple visual domains with residual adapters
Series Res. adapt.3159Efficient parametrization of multi-domain deep neural networks
LwF2515Learning without Forgetting
BN adapt.1363Universal representations:The missing link between faces, text, planktons, and cat breeds-
Res. adapt. (large)3131Learning multiple visual domains with residual adapters
Depthwise Sharing3234Depthwise Convolution is All You Need for Learning Multiple Visual Domains
Depthwise Soft Sharing3507Depthwise Convolution is All You Need for Learning Multiple Visual Domains
Parallel Res. adapt.3412Efficient parametrization of multi-domain deep neural networks
0 of 14 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili