HyperAI
HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
지속 학습
Continual Learning On Visual Domain Decathlon
Continual Learning On Visual Domain Decathlon
평가 지표
decathlon discipline (Score)
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
decathlon discipline (Score)
Paper Title
Repository
Res. adapt. finetune all
2643
Learning multiple visual domains with residual adapters
-
Piggyback
2838
Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights
-
Res. adapt.
2118
Learning multiple visual domains with residual adapters
-
DAN
2851
Incremental Learning Through Deep Adaptation
-
Res. adapt. decay
2621
Learning multiple visual domains with residual adapters
-
NetTailor
3744
NetTailor: Tuning the Architecture, Not Just the Weights
-
Res. adapt. dom-pred
2503
Learning multiple visual domains with residual adapters
-
Series Res. adapt.
3159
Efficient parametrization of multi-domain deep neural networks
-
LwF
2515
Learning without Forgetting
-
BN adapt.
1363
Universal representations:The missing link between faces, text, planktons, and cat breeds
-
Res. adapt. (large)
3131
Learning multiple visual domains with residual adapters
-
Depthwise Sharing
3234
Depthwise Convolution is All You Need for Learning Multiple Visual Domains
-
Depthwise Soft Sharing
3507
Depthwise Convolution is All You Need for Learning Multiple Visual Domains
-
Parallel Res. adapt.
3412
Efficient parametrization of multi-domain deep neural networks
-
0 of 14 row(s) selected.
Previous
Next
Continual Learning On Visual Domain Decathlon | SOTA | HyperAI초신경