HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
클릭률 예측
Click Through Rate Prediction On Criteo
Click Through Rate Prediction On Criteo
평가 지표
AUC
Log Loss
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
AUC
Log Loss
Paper Title
DCNv3
0.8162
0.4358
FCN: Fusing Exponential and Linear Cross Network for Click-Through Rate Prediction
GDCN
0.8161
0.4360
Towards Deeper, Lighter and Interpretable Cross Network for CTR Prediction
MemoNet
0.8152
-
MemoNet: Memorizing All Cross Features' Representations Efficiently via Multi-Hash Codebook Network for CTR Prediction
TF4CTR
0.8150
-
TF4CTR: Twin Focus Framework for CTR Prediction via Adaptive Sample Differentiation
FinalMLP + MMBAttn
0.81497
-
MMBAttn: Max-Mean and Bit-wise Attention for CTR Prediction
FinalMLP
0.8149
-
FinalMLP: An Enhanced Two-Stream MLP Model for CTR Prediction
CETN
0.8148
0.4373
CETN: Contrast-enhanced Through Network for CTR Prediction
DNN + MMBAttn
0.8143
-
MMBAttn: Max-Mean and Bit-wise Attention for CTR Prediction
STEC
0.8143
0.4379
STEC: See-Through Transformer-based Encoder for CTR Prediction
MaskNet
0.8131
-
MaskNet: Introducing Feature-Wise Multiplication to CTR Ranking Models by Instance-Guided Mask
DeepLight
0.8123
0.4395
DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR Predictions in Ad Serving
CELS
0.8117
0.4400
Cognitive Evolutionary Search to Select Feature Interactions for Click-Through Rate Prediction
OptFS
0.8116
0.4401
Optimizing Feature Set for Click-Through Rate Prediction
DCN V2
0.8115
0.4406
DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems
OptEmbed
0.8114
0.44
OptEmbed: Learning Optimal Embedding Table for Click-through Rate Prediction
ContextNet
0.8113
-
ContextNet: A Click-Through Rate Prediction Framework Using Contextual information to Refine Feature Embedding
FiBiNet++
0.8110
-
FiBiNet++: Reducing Model Size by Low Rank Feature Interaction Layer for CTR Prediction
NormDNN
0.8107
-
Correct Normalization Matters: Understanding the Effect of Normalization On Deep Neural Network Models For Click-Through Rate Prediction
DeepFFM
0.8104
0.4416
FAT-DeepFFM: Field Attentive Deep Field-aware Factorization Machine
FiBiNET
0.8103
0.4423
-
0 of 38 row(s) selected.
Previous
Next