HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
클릭률 예측
Click Through Rate Prediction On Bing News
Click Through Rate Prediction On Bing News
평가 지표
AUC
Log Loss
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
AUC
Log Loss
Paper Title
xDeepFM
0.84
0.2649
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
Wide & Deep
0.8377
0.2668
Wide & Deep Learning for Recommender Systems
DeepFM
0.8376
0.2671
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
PNN
0.8321
0.2775
Product-based Neural Networks for User Response Prediction
RippleNet
0.678
-
RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems
DKN
0.659
-
DKN: Deep Knowledge-Aware Network for News Recommendation
DNN
0.03
0.3382
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
0 of 7 row(s) selected.
Previous
Next
Click Through Rate Prediction On Bing News | SOTA | HyperAI초신경