HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
Click Through Rate Prediction
Click Through Rate Prediction On Avazu
Click Through Rate Prediction On Avazu
평가 지표
AUC
LogLoss
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
AUC
LogLoss
Paper Title
Repository
OptEmbed
0.7902
0.374
OptEmbed: Learning Optimal Embedding Table for Click-through Rate Prediction
Sparse Deep FwFM
0.7897
0.3748
DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR Predictions in Ad Serving
DCNv3
0.7970
0.3695
DCNv3: Towards Next Generation Deep Cross Network for CTR Prediction
-
Fi-GNN
0.7762
0.3825
Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction
FGCNN+IPNN
0.7883
0.3746
Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction
FinalMLP + MMBAttn
0.7666
-
MMBAttn: Max-Mean and Bit-wise Attention for CTR Prediction
-
FLEN
0.75
-
FLEN: Leveraging Field for Scalable CTR Prediction
CELS
0.8001
0.3678
Cognitive Evolutionary Search to Select Feature Interactions for Click-Through Rate Prediction
DNN + MMBAttn
0.765
-
MMBAttn: Max-Mean and Bit-wise Attention for CTR Prediction
-
OptInter
0.8062
0.3637
Memorize, Factorize, or be Naïve: Learning Optimal Feature Interaction Methods for CTR Prediction
AutoInt
0.7752
0.3823
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
CETN
0.7962
-
CETN: Contrast-enhanced Through Network for CTR Prediction
AFN+
0.7555
-
Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions
OptInter-M
0.8060
0.3638
Memorize, Factorize, or be Naïve: Learning Optimal Feature Interaction Methods for CTR Prediction
OptFS
0.795
0.3709
Optimizing Feature Set for Click-Through Rate Prediction
0 of 15 row(s) selected.
Previous
Next