HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 분류
  4. Classification On Mhist

Classification On Mhist

평가 지표

Accuracy

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
Accuracy
Paper TitleRepository
SwAV (ResNet-50)77.99Benchmarking Self-Supervised Learning on Diverse Pathology Datasets
MoCo-v2 (ResNet-50)88.03Improved transferability of self-supervised learning models through batch normalization finetuning-
SwAV (ResNet-50)83.21Improved transferability of self-supervised learning models through batch normalization finetuning-
Supervised (ViT-S/16)81.68Benchmarking Self-Supervised Learning on Diverse Pathology Datasets
MoCo-v2 (ResNet-50)85.88Benchmarking Self-Supervised Learning on Diverse Pathology Datasets
Barlow Rwins (ResNet-50)81.27Benchmarking Self-Supervised Learning on Diverse Pathology Datasets
Supervised (ResNet-50)78.92Benchmarking Self-Supervised Learning on Diverse Pathology Datasets
DINO (ViT-S/16)79.43Benchmarking Self-Supervised Learning on Diverse Pathology Datasets
Barlow Twins (ResNet-50)84.03Improved transferability of self-supervised learning models through batch normalization finetuning-
0 of 9 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili