HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
부정맥 감지
Arrhythmia Detection On Mit Bih Ar
Arrhythmia Detection On Mit Bih Ar
평가 지표
Accuracy (Inter-Patient)
Accuracy (Intra-Patient)
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Accuracy (Inter-Patient)
Accuracy (Intra-Patient)
Paper Title
BiRNN
99.53%
99.92%
Inter- and intra- patient ECG heartbeat classification for arrhythmia detection: a sequence to sequence deep learning approach
BiLSTM-Attention
99.47%
-
Interpretability Analysis of Heartbeat Classification Based on Heartbeat Activity’s Global Sequence Features and BiLSTM-Attention Neural Network
ESN+Reservoir Computing
99.11%
-
Reservoir Computing Models for Patient-Adaptable ECG Monitoring in Wearable Devices
Deep residual CNN
93.4%
-
ECG Heartbeat Classification: A Deep Transferable Representation
TVCG_PSO
92.4%
-
Inter-Patient ECG Heartbeat Classification with Temporal VCG Optimized by PSO
SVM
76.3%
98.7%
Support vector machine based arrhythmia classification using reduced features
0 of 6 row(s) selected.
Previous
Next
Arrhythmia Detection On Mit Bih Ar | SOTA | HyperAI초신경