HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
나이 및 성별 분류
Age And Gender Classification On Adience
Age And Gender Classification On Adience
평가 지표
Accuracy (5-fold)
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Accuracy (5-fold)
Paper Title
MiVOLO-V2
97.39
Beyond Specialization: Assessing the Capabilities of MLLMs in Age and Gender Estimation
ViT-hSeq
96.56
A Hybrid Transformer-Sequencer approach for Age and Gender classification from in-wild facial images
MiVOLO-D1
96.51
MiVOLO: Multi-input Transformer for Age and Gender Estimation
RetinaFace + ArcFace + MLP + Skip connections
90.66
Generalizing MLPs With Dropouts, Batch Normalization, and Skip Connections
CPG (single crop, pytorch)
89.66
Compacting, Picking and Growing for Unforgetting Continual Learning
PAENet (single crop, tensorflow)
89.08
Increasingly Packing Multiple Facial-Informatics Modules in A Unified Deep-Learning Model via Lifelong Learning
Levi_Hassner CNN ( over-sample, caffe)
86.8
Age and Gender Classification using Convolutional Neural Networks
Levi_Hassner CNN (single crop, caffe)
85.9
Age and Gender Classification using Convolutional Neural Networks
LMTCNN-2-1 (single crop, tensorflow)
85.16
Joint Estimation of Age and Gender from Unconstrained Face Images using Lightweight Multi-task CNN for Mobile Applications
Levi_Hassner CNN (single crop, tensorflow)
82.52
Age and Gender Classification using Convolutional Neural Networks
0 of 10 row(s) selected.
Previous
Next