HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
미학 품질 평가
Aesthetics Quality Assessment On Ava
Aesthetics Quality Assessment On Ava
평가 지표
Accuracy
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Accuracy
Paper Title
MP_adam
83.0%
Attention-based Multi-Patch Aggregation for Image Aesthetic Assessment
A-Lamp
82.5%
A-Lamp: Adaptive Layout-Aware Multi-Patch Deep Convolutional Neural Network for Photo Aesthetic Assessment
Pool-3FC
81.7%
Effective Aesthetics Prediction with Multi-level Spatially Pooled Features
NIMA
81.5%
NIMA: Neural Image Assessment
MTRLCNN
79.1%
Deep Aesthetic Quality Assessment with Semantic Information
MNA-CNN
77.4%
Composition-Preserving Deep Photo Aesthetics Assessment
ADB-CNN
77.3%
Photo Aesthetics Ranking Network with Attributes and Content Adaptation
DMA-Net
75.4%
Deep Multi-Patch Aggregation Network for Image Style, Aesthetics, and Quality Estimation
Hand-crafted features
68.0%
-
0 of 9 row(s) selected.
Previous
Next
Aesthetics Quality Assessment On Ava | SOTA | HyperAI초신경