HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Zeroshot Video Question Answer
Zeroshot Video Question Answer On Msrvtt Qa
Zeroshot Video Question Answer On Msrvtt Qa
Métriques
Accuracy
Confidence Score
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Confidence Score
Paper Title
Repository
Chat-UniVi-7B
55.0
3.1
Chat-UniVi: Unified Visual Representation Empowers Large Language Models with Image and Video Understanding
TS-LLaVA-34B
66.2
3.6
TS-LLaVA: Constructing Visual Tokens through Thumbnail-and-Sampling for Training-Free Video Large Language Models
BT-Adapter (zero-shot)
51.2
2.9
BT-Adapter: Video Conversation is Feasible Without Video Instruction Tuning
Video-LLaVA-7B
59.2
3.5
Video-LLaVA: Learning United Visual Representation by Alignment Before Projection
LLaMA-VID-7B (2 Token)
57.7
3.2
LLaMA-VID: An Image is Worth 2 Tokens in Large Language Models
IG-VLM
63.8
3.5
An Image Grid Can Be Worth a Video: Zero-shot Video Question Answering Using a VLM
Omni-VideoAssistant
55.3
3.3
OmniDataComposer: A Unified Data Structure for Multimodal Data Fusion and Infinite Data Generation
Elysium
67.5
3.2
Elysium: Exploring Object-level Perception in Videos via MLLM
MovieChat
52.7
2.6
MovieChat: From Dense Token to Sparse Memory for Long Video Understanding
SUM-shot+Vicuna
56.8
-
Shot2Story20K: A New Benchmark for Comprehensive Understanding of Multi-shot Videos
CAT-7B
62.1
3.5
CAT: Enhancing Multimodal Large Language Model to Answer Questions in Dynamic Audio-Visual Scenarios
BT-Adapter (zero-shot)
51.2
2.9
BT-Adapter: Video Conversation is Feasible Without Video Instruction Tuning
VideoChat2
54.1
3.3
MVBench: A Comprehensive Multi-modal Video Understanding Benchmark
Vista-LLaMA-7B
60.5
3.3
Vista-LLaMA: Reliable Video Narrator via Equal Distance to Visual Tokens
-
Tarsier (34B)
66.4
3.7
Tarsier: Recipes for Training and Evaluating Large Video Description Models
Video-LaVIT
59.3
3.3
Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization
Video Chat-7B
45.0
2.5
VideoChat: Chat-Centric Video Understanding
VideoGPT+
60.6
3.6
VideoGPT+: Integrating Image and Video Encoders for Enhanced Video Understanding
Video-ChatGPT-7B
49.3
2.8
Video-ChatGPT: Towards Detailed Video Understanding via Large Vision and Language Models
PLLaVA (34B)
68.7
3.6
PLLaVA : Parameter-free LLaVA Extension from Images to Videos for Video Dense Captioning
0 of 30 row(s) selected.
Previous
Next