HyperAIHyperAI

Within Session Ssvep On Lee2019 Ssvep Moabb

Métriques

Accuracy
CO2 Emission (g)
training time (s)

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
Accuracy
CO2 Emission (g)
training time (s)
Paper TitleRepository
SSVEP_MDM74.818181818181810.1139880067532467515.961555350649352The largest EEG-based BCI reproducibility study for open science: the MOABB benchmark-
SSVEP_TS + SVM88.583333333333340.1046866730648148114.65914484722222The largest EEG-based BCI reproducibility study for open science: the MOABB benchmark-
ShallowConvNet69.3611111111111-33.26947674074074The largest EEG-based BCI reproducibility study for open science: the MOABB benchmark-
EEGNeX93.80555555555556-191.3021131111111The largest EEG-based BCI reproducibility study for open science: the MOABB benchmark-
TRCA97.777777777777770.2507037096481481435.42286275The largest EEG-based BCI reproducibility study for open science: the MOABB benchmark-
EEGNet-8,264.42592592592592-13.879997119444445The largest EEG-based BCI reproducibility study for open science: the MOABB benchmark-
SSVEP_TS + LR89.444444444444440.1115387153240740815.61881037037037The largest EEG-based BCI reproducibility study for open science: the MOABB benchmark-
CCA90.972222222222210.0101038925601851861.415124501851852The largest EEG-based BCI reproducibility study for open science: the MOABB benchmark-
EEGITNet86.8425925925926-23.24565614351852The largest EEG-based BCI reproducibility study for open science: the MOABB benchmark-
0 of 9 row(s) selected.
Within Session Ssvep On Lee2019 Ssvep Moabb | SOTA | HyperAI