HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Weakly Supervised Semantic Segmentation
Weakly Supervised Semantic Segmentation On 1
Weakly Supervised Semantic Segmentation On 1
Métriques
Mean IoU
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Mean IoU
Paper Title
Repository
SFC(ResNet-101)
72.5
SFC: Shared Feature Calibration in Weakly Supervised Semantic Segmentation
URN(ResNet-101, no saliency, no RW)
69.7
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation
PMM(Res2Net101, no saliency, no RW)
70.5
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation
ADELE (DeepLabV1-ResNet38)
72.0
Adaptive Early-Learning Correction for Segmentation from Noisy Annotations
Infer-CAM(DeepLabV2-R101)
71.8
Inferring the Class Conditional Response Map for Weakly Supervised Semantic Segmentation
SPML (DeepLabV2-R101)
71.6
Universal Weakly Supervised Segmentation by Pixel-to-Segment Contrastive Learning
-
QA-CLIMS
75.5
Question-Answer Cross Language Image Matching for Weakly Supervised Semantic Segmentation
VWL-M
70.4
Weakly-Supervised Semantic Segmentation with Visual Words Learning and Hybrid Pooling
ICAM
70.8
Importance Sampling CAMs for Weakly-Supervised Segmentation
-
EPS(DeepLabV1-ResNet101
71.8
Railroad is not a Train: Saliency as Pseudo-pixel Supervision for Weakly Supervised Semantic Segmentation
CLIP-ES(DeepLabV2-ResNet101)
73.9
CLIP is Also an Efficient Segmenter: A Text-Driven Approach for Weakly Supervised Semantic Segmentation
AMN (DeepLabV2-ResNet101, MS-COCO-pretrained weights)
70.6
Threshold Matters in WSSS: Manipulating the Activation for the Robust and Accurate Segmentation Model Against Thresholds
RIB+Sal (DeepLabV2-ResNet101)
70.0
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation
AMN (DeepLabV2-ResNet101)
69.6
Threshold Matters in WSSS: Manipulating the Activation for the Robust and Accurate Segmentation Model Against Thresholds
IRNet (ResNet-50)
64.8
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations
SLRNet(1-stage,ResNet38)
67.6
Learning Self-Supervised Low-Rank Network for Single-Stage Weakly and Semi-Supervised Semantic Segmentation
ViT-PCM
70.9
Max Pooling with Vision Transformers reconciles class and shape in weakly supervised semantic segmentation
W-OoD (WResNet-38)
70.1
Weakly Supervised Semantic Segmentation using Out-of-Distribution Data
ClusterCAM
70.7
Clustering-Guided Class Activation for Weakly Supervised Semantic Segmentation
RCA
72.8
Regional Semantic Contrast and Aggregation for Weakly Supervised Semantic Segmentation
0 of 60 row(s) selected.
Previous
Next