HyperAIHyperAI

Command Palette

Search for a command to run...

Visual Question Answering On Gqa Test2019

Métriques

Accuracy
Binary
Consistency
Distribution
Open
Plausibility
Validity

Résultats

Résultats de performance de divers modèles sur ce benchmark

Paper Title
human89.391.298.40.087.497.298.9-
DREAM+Unicoder-VL (MSRA)76.0484.4691.473.6868.683.7596.42-
TRRNet (Ensemble)74.0382.1289.01.2966.8983.5896.76-
MIL-nbgao73.8180.891.761.767.6483.996.73-
Kakao Brain73.3379.6877.022.4667.7383.796.36-
Coarse-to-Fine Reasoning, Single Model72.1481.1690.962.3964.1984.8196.77-
27070.2377.586.941.4963.8283.7796.65-
NSM ensemble (updated)67.5580.4593.832.7856.1684.1696.53-
VinVL-DPT64.9282.6394.375.1149.2984.9196.64-
VinVL+L64.8582.5994.04.5949.1984.9196.62VinVL+L: Enriching Visual Representation with Location Context in VQA
Single Model64.6582.6394.354.7248.7784.9896.62VinVL: Revisiting Visual Representations in Vision-Language Models
Wayne63.9480.8491.544.6949.0384.7496.56-
Single63.277.9189.845.2550.2285.1596.47-
NSM single (updated)63.1778.9493.253.7149.2584.2896.41-
LXR955, Ensemble62.7179.7993.16.4247.6485.2196.36LXMERT: Learning Cross-Modality Encoder Representations from Transformers
MDETR62.4580.9193.955.3646.1584.1596.33-
1-gqa62.4480.2894.365.3346.6984.9196.46-
UCM61.4978.488.685.746.5684.8596.33-
GRN61.2278.6990.316.7745.8185.4396.36Bilinear Graph Networks for Visual Question Answering
lxmert-adv-txt61.1278.0791.135.5546.1684.896.36-
0 of 127 row(s) selected.
Visual Question Answering On Gqa Test2019 | SOTA | HyperAI