HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Visual Question Answering 1
Visual Question Answering On Vqa V2 Test Dev 1
Visual Question Answering On Vqa V2 Test Dev 1
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Paper Title
Repository
Florence
80.16
Florence: A New Foundation Model for Computer Vision
LXMERT (low-magnitude pruning)
70.72
LXMERT Model Compression for Visual Question Answering
VK-OOD
76.8
Differentiable Outlier Detection Enable Robust Deep Multimodal Analysis
BLIP-2 ViT-G OPT 6.7B (fine-tuned)
82.30
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
BLIP-2 ViT-G OPT 2.7B (fine-tuned)
81.74
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
LocVLM-L
56.2
Learning to Localize Objects Improves Spatial Reasoning in Visual-LLMs
BLIP-2 ViT-G FlanT5 XL (fine-tuned)
81.66
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
OFA
82.0
OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework
Aurora (ours, r=64)
77.69
-
-
CoCa
82.3
CoCa: Contrastive Captioners are Image-Text Foundation Models
mPLUG-2
81.11
mPLUG-2: A Modularized Multi-modal Foundation Model Across Text, Image and Video
0 of 11 row(s) selected.
Previous
Next