HyperAI

Visual Prompt Tuning On Vtab 1K Structured 8

Métriques

Mean Accuracy

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
Mean Accuracy
Paper TitleRepository
SPT-Deep(ViT-B/16_MAE_pretrained_ImageNet-1K)59.23Revisiting the Power of Prompt for Visual Tuning-
GateVPT(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K)49.10Improving Visual Prompt Tuning for Self-supervised Vision Transformers
VPT-Shallow(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K)37.55Visual Prompt Tuning
SPT-Shallow(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K)55.16Revisiting the Power of Prompt for Visual Tuning-
VPT-Deep(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K)42.38Visual Prompt Tuning
SPT-Deep(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K)58.36Revisiting the Power of Prompt for Visual Tuning-
SPT-Shallow(ViT-B/16_MAE_pretrained_ImageNet-1K)53.46Revisiting the Power of Prompt for Visual Tuning-
VPT-Deep(ViT-B/16_MAE_pretrained_ImageNet-1K)26.57Visual Prompt Tuning
GateVPT(ViT-B/16_MAE_pretrained_ImageNet-1K)36.80Improving Visual Prompt Tuning for Self-supervised Vision Transformers
VPT-Shallow(ViT-B/16_MAE_pretrained_ImageNet-1K)27.50Visual Prompt Tuning
0 of 10 row(s) selected.