Visual Prompt Tuning On Vtab 1K Natural 7
Métriques
Mean Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | Mean Accuracy | Paper Title | Repository |
---|---|---|---|
SPT-Shallow(ViT-B/16_MAE_pretrained_ImageNet-1K) | 62.53 | Revisiting the Power of Prompt for Visual Tuning | - |
VPT-Shallow(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K) | 67.34 | Visual Prompt Tuning | |
SPT-Deep(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K) | 76.20 | Revisiting the Power of Prompt for Visual Tuning | - |
VPT-Shallow(ViT-B/16_MAE_pretrained_ImageNet-1K) | 39.96 | Visual Prompt Tuning | |
SPT-Shallow(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K) | 74.47 | Revisiting the Power of Prompt for Visual Tuning | - |
SPT-Deep(ViT-B/16_MAE_pretrained_ImageNet-1K) | 67.19 | Revisiting the Power of Prompt for Visual Tuning | - |
VPT-Deep(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K) | 70.27 | Visual Prompt Tuning | |
GateVPT(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K) | 74.84 | Improving Visual Prompt Tuning for Self-supervised Vision Transformers | |
VPT-Deep(ViT-B/16_MAE_pretrained_ImageNet-1K) | 36.02 | Visual Prompt Tuning | |
GateVPT(ViT-B/16_MAE_pretrained_ImageNet-1K) | 47.61 | Improving Visual Prompt Tuning for Self-supervised Vision Transformers |
0 of 10 row(s) selected.