HyperAI
HyperAI
Accueil
Actualités
Articles de recherche
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Rechercher sur le site...
⌘
K
Accueil
SOTA
Suivi d'objets visuels
Visual Object Tracking On Tnl2K
Visual Object Tracking On Tnl2K
Métriques
AUC
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
AUC
Paper Title
Repository
MCITrack-B224
62.9
Exploring Enhanced Contextual Information for Video-Level Object Tracking
RTracker-L
60.6
RTracker: Recoverable Tracking via PN Tree Structured Memory
MixFormerV2-B
57.4
-
-
LoRAT-g-378
62.7
Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
MCITrack-L384
65.3
Exploring Enhanced Contextual Information for Video-Level Object Tracking
ARTrackV2-L
61.6
ARTrackV2: Prompting Autoregressive Tracker Where to Look and How to Describe
SeqTrack-L384
57.8
Unified Sequence-to-Sequence Learning for Single- and Multi-Modal Visual Object Tracking
AdaSwitcher
-
Towards More Flexible and Accurate Object Tracking with Natural Language: Algorithms and Benchmark
ODTrack-B
60.9
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
ARTrack-L
60.3
Autoregressive Visual Tracking
-
ODTrack-L
61.7
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
DropTrack
56.9
DropMAE: Learning Representations via Masked Autoencoders with Spatial-Attention Dropout for Temporal Matching Tasks
LoRAT-L-378
62.3
Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
0 of 13 row(s) selected.
Previous
Next