HyperAI

Visual Object Tracking On Lasot Ext

Métriques

AUC
Precision

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
AUC
Precision
Paper TitleRepository
DropTrack52.760.2DropMAE: Masked Autoencoders with Spatial-Attention Dropout for Tracking Tasks
LoRAT-g-37856.564.9Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
ODTrack-L53.9-ODTrack: Online Dense Temporal Token Learning for Visual Tracking
ODTrack-B52.4-ODTrack: Online Dense Temporal Token Learning for Visual Tracking
HIPTrack53.060.6HIPTrack: Visual Tracking with Historical Prompts
DAM4SAM60.9-A Distractor-Aware Memory for Visual Object Tracking with SAM2
ARTrack-L52.859.7Autoregressive Visual Tracking
MCITrack-L38455.762.9Exploring Enhanced Contextual Information for Video-Level Object Tracking
UNINEXT-H56.263.8Universal Instance Perception as Object Discovery and Retrieval
KeepTrack48.2-Learning Target Candidate Association to Keep Track of What Not to Track
MCITrack-B22454.662.1Exploring Enhanced Contextual Information for Video-Level Object Tracking
ARTrackV2-L53.460.2ARTrackV2: Prompting Autoregressive Tracker Where to Look and How to Describe
LoRAT-L-37856.665.1Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
SAMURAI-L61.072.2SAMURAI: Adapting Segment Anything Model for Zero-Shot Visual Tracking with Motion-Aware Memory-
OSTrack50.657.6Joint Feature Learning and Relation Modeling for Tracking: A One-Stream Framework
SeqTrack-L38450.757.5Unified Sequence-to-Sequence Learning for Single- and Multi-Modal Visual Object Tracking
LTMU41.447.3High-Performance Long-Term Tracking with Meta-Updater
RTracker-L54.962.7RTracker: Recoverable Tracking via PN Tree Structured Memory
0 of 18 row(s) selected.