HyperAI

Visual Dialog On Visual Dialog V1 0 Test Std

Métriques

MRR (x 100)
Mean
NDCG (x 100)
R@1
R@10
R@5

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
MRR (x 100)
Mean
NDCG (x 100)
R@1
R@10
R@5
Paper TitleRepository
MVAN64.843.9759.3751.4590.6581.12Multi-View Attention Network for Visual Dialog
ensemble, finetune56.425.4776.1744.3284.5270.23--
disc64.434.1358.1950.790.1880.83--
157.135.8572.3345.1782.469.95--
jiuyigedian64.793.9858.2551.3290.3881.0--
VD-PCR56.055.7276.1444.7582.7568.4--
5xFGA (F-RCNNx101)69.33.1457.2055.6594.0586.73Factor Graph Attention
RVA63.034.1855.5949.0389.8380.40Recursive Visual Attention in Visual Dialog
5_448.377.0573.0834.6577.5362.98--
lijunlin_763.74.2658.5950.389.1579.47--
gat_disc_353.1911.9647.5141.474.1565.85--
Disc, Dense, 4 Ensemble.55.116.5572.4143.2379.7767.65--
Ensemble + Fine-tuning56.355.7976.4345.1782.1768.12--
SCL_4866.633.4160.9152.5292.2784.1--
HRE-QIH-D54.26.4145.539.9381.5070.45Visual Dialog
bert-double-stream-finetuning62.655.8974.6254.3783.3370.75--
Ensemble + Finetune52.146.5374.8838.9280.6566.6Efficient Attention Mechanism for Visual Dialog that can Handle All the Interactions between Multiple Inputs
P1P2+Distill+Ensemble56.25.4177.9244.4583.7868.9--
DLC-461.094.6552.5746.8387.4278.22--
5-249.037.0772.8535.8877.7562.88--
0 of 80 row(s) selected.