Video Super Resolution On Msu Vsr Benchmark
Métriques
1 - LPIPS
ERQAv1.0
FPS
PSNR
QRCRv1.0
SSIM
Subjective score
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | 1 - LPIPS | ERQAv1.0 | FPS | PSNR | QRCRv1.0 | SSIM | Subjective score |
---|---|---|---|---|---|---|---|
video-super-resolution-with-recurrent | 0.819 | 0.667 | 1.961 | 25.321 | 0.619 | 0.826 | 5.566 |
revisiting-temporal-modeling-for-video-super | 0.856 | 0.617 | 2.74 | 23.786 | 0.549 | 0.789 | 5.02 |
real-esrgan-training-real-world-blind-super | 0.871 | 0.598 | 1.019 | 27.195 | 0 | 0.824 | 3.697 |
hierarchical-conditional-flow-a-unified | 0.923 | 0.713 | 0.066 | 26.067 | 0 | 0.791 | 4.262 |
vrt-a-video-restoration-transformer | 0.929 | 0.758 | 2.778 | 31.669 | 0.722 | 0.902 | 7.628 |
real-esrgan-training-real-world-blind-super | 0.895 | 0.663 | 1.01 | 24.441 | 0 | 0.774 | 5.392 |
local-global-fusion-network-for-video-super | 0.903 | 0.74 | 0.667 | 31.291 | 0.629 | 0.898 | 6.505 |
comisr-compression-informed-video-super | 0.879 | 0.654 | 1.613 | 26.708 | 0.619 | 0.84 | 5.637 |
real-world-super-resolution-via-kernel | 0.911 | 0.69 | 0.352 | 25.989 | 0 | 0.767 | 5.286 |
Modèle 10 | 0.861 | 0.6 | 1.282 | 27.716 | 0 | 0.838 | 3.308 |
Modèle 11 | 0.856 | 0.57 | 3.125 | 27.176 | 0 | 0.819 | 2.739 |
tdan-temporally-deformable-alignment-network | 0.721 | 0.706 | 0.493 | 30.244 | 0.609 | 0.883 | 5.454 |
blind-face-restoration-via-deep-multi-scale | 0.623 | 0.339 | 0.909 | 24.832 | 0 | 0.759 | 0.277 |
temporal-modulation-network-for-controllable | 0.931 | 0.712 | 1.136 | 30.364 | 0.549 | 0.885 | 6 |
deep-video-super-resolution-network-using | 0.87 | 0.645 | 0.418 | 25.852 | 0.549 | 0.83 | 5.324 |
deep-video-super-resolution-using-hr-optical | 0.904 | 0.66 | 0.571 | 29.381 | 0.557 | 0.872 | 4.805 |
learning-a-single-convolutional-super | 0.877 | 0.594 | 5.882 | 27.672 | 0 | 0.834 | 3.468 |
iseebetter-spatio-temporal-video-super | 0.741 | 0.748 | 0.045 | 31.104 | 0.629 | 0.896 | 6.809 |
recurrent-back-projection-network-for-video | 0.74 | 0.746 | 0.043 | 31.407 | 0.629 | 0.899 | 7.068 |
esrgan-enhanced-super-resolution-generative | 0.948 | 0.735 | 1.004 | 27.33 | 0 | 0.808 | 5.353 |
deformable-3d-convolution-for-video-super | 0.915 | 0.674 | 0.041 | 29.703 | 0.549 | 0.876 | 5.066 |
dynavsr-dynamic-adaptive-blind-video-super | 0.884 | 0.709 | 0.177 | 28.377 | 0.557 | 0.865 | 6.136 |
basicvsr-the-search-for-essential-components | 0.934 | 0.75 | 2.128 | 31.443 | 0.709 | 0.9 | 7.186 |
deep-video-super-resolution-using-hr-optical | 0.895 | 0.647 | 0.699 | 25.986 | 0.557 | 0.831 | 4.863 |
revisiting-temporal-modeling-for-video-super | 0.842 | 0.627 | 2.567 | 24.252 | 0.557 | 0.79 | 5.35 |
real-time-single-image-and-video-super | 0.765 | 0.521 | 3.333 | 26.714 | 0 | 0.811 | 2.099 |
towards-real-world-blind-face-restoration | 0.793 | 0.538 | 1.562 | 24.195 | 0 | 0.745 | 2.686 |
deep-blind-video-super-resolution | 0.921 | 0.737 | 0.241 | 31.071 | 0.629 | 0.894 | 6.947 |
deep-video-super-resolution-network-using | 0.868 | 0.641 | 0.605 | 24.606 | 0.549 | 0.828 | 5.124 |
dynavsr-dynamic-adaptive-blind-video-super | 0.859 | 0.643 | 0.15 | 29.011 | 0.549 | 0.864 | 4.359 |
swinir-image-restoration-using-swin | 0.895 | 0.618 | 0.407 | 25.12 | 0 | 0.782 | 4.799 |
video-super-resolution-with-temporal-group-1 | 0.859 | 0.669 | 0.706 | 25.786 | 0.549 | 0.831 | 5.529 |