HyperAI

Video Quality Assessment On Msu Video Quality

Métriques

KLCC
PLCC
SRCC
Type

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleKLCCPLCCSRCCType
blindly-assess-quality-of-in-the-wild-videos0.76400.92700.9131NR
disentangling-aesthetic-and-technical-effects0.72160.90990.8871NR
nima-neural-image-assessment0.67450.87840.8494NR
perceptual-quality-assessment-of-smartphone0.71860.88140.8822NR
ugc-vqa-benchmarking-blind-video-quality0.54140.77170.7286NR
fast-vqa-efficient-end-to-end-video-quality0.56450.80870.7508NR
fast-vqa-efficient-end-to-end-video-quality0.64980.86130.8308NR
barriers-towards-no-reference-metrics0.42150.67130.5985NR
unified-quality-assessment-of-in-the-wild0.78830.94310.9289NR
deep-learning-based-full-reference-and-no0.69420.88510.8673NR
from-patches-to-pictures-paq-2-piq-mapping0.70790.85490.8705NR
quality-assessment-of-in-the-wild-videos0.74830.91800.9049NR
Modèle 130.37750.28980.5066NR
koniq-10k-an-ecologically-valid-database-for0.66080.84640.8360NR
musiq-multi-scale-image-quality-transformer0.74330.90680.9004NR
perceptual-quality-assessment-of-smartphone0.71480.88240.8794NR
unique-unsupervised-image-quality-estimation0.76480.92380.9148NR
blind-image-quality-assessment-using-a-deep0.77500.92220.9220NR
norm-in-norm-loss-with-faster-convergence-and0.75890.91060.9104NR
deep-learning-based-full-reference-and-no0.70370.89330.8742NR
perceptual-quality-assessment-of-smartphone0.71060.88550.8799NR