HyperAI

Video Quality Assessment On Msu Sr Qa Dataset

Métriques

KLCC
PLCC
SROCC
Type

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleKLCCPLCCSROCCType
Modèle 10.163650.201380.21450FR
exploring-clip-for-assessing-the-look-and0.697740.718080.56875NR
musiq-multi-scale-image-quality-transformer0.518970.591510.64589NR
fsim-a-feature-similarity-index-for-image0.269420.350830.34996FR
Modèle 50.120670.094280.16441FR
pieapp-perceptual-image-error-assessment0.619450.757430.75215FR
norm-in-norm-loss-with-faster-convergence-and0.521720.622040.64382NR
multiscale-structural-similarity-for-image0.078210.160350.11017FR
topiq-a-top-down-approach-from-semantics-to0.406630.510610.51687NR
blind-image-quality-assessment-using-a-deep0.551390.639710.68621NR
q-align-teaching-lmms-for-visual-scoring-via0.616770.741160.75088NR
the-unreasonable-effectiveness-of-deep0.431580.523850.54461FR
Modèle 130.099980.138400.12914FR
topiq-a-top-down-approach-from-semantics-to0.428110.575640.55568FR
the-unreasonable-effectiveness-of-deep0.414710.528200.52868FR
erqa-edge-restoration-quality-assessment-for0.477850.601880.59345FR
Modèle 170.476740.623110.60468FR
Modèle 180.322830.400730.43219FR
image-quality-assessment-unifying-structure0.423200.550420.53346FR
q-align-teaching-lmms-for-visual-scoring-via0.422110.500550.51521NR
Modèle 210.340040.418920.44064NR
blindly-assess-image-quality-in-the-wild0.484660.552110.59883NR
Modèle 230.323310.397440.43296FR
Modèle 240.135510.196720.17889FR
unified-quality-assessment-of-in-the-wild0.484060.618210.60193NR
quality-assessment-of-in-the-wild-videos0.436340.544070.53652NR
musiq-multi-scale-image-quality-transformer0.446690.524040.56152NR
Modèle 280.242540.331690.33167NR
musiq-multi-scale-image-quality-transformer0.526730.602160.64927NR
multiscale-structural-similarity-for-image0.181740.218000.24422FR
topiq-a-top-down-approach-from-semantics-to0.531400.609050.64923NR
exploring-clip-for-assessing-the-look-and0.387940.503790.49881NR
no-reference-image-quality-assessment-via-10.393980.500050.48882NR
topiq-a-top-down-approach-from-semantics-to0.284730.340000.36204NR
topiq-a-top-down-approach-from-semantics-to0.484280.589490.59564NR
multiscale-structural-similarity-for-image0.165780.300140.21604FR
the-2018-pirm-challenge-on-perceptual-image0.391010.531780.52319NR
musiq-multi-scale-image-quality-transformer0.553120.665310.67746NR
from-patches-to-pictures-paq-2-piq-mapping0.577530.709880.71167NR
vila-learning-image-aesthetics-from-user0.261800.288460.33728NR
exploring-clip-for-assessing-the-look-and0.494170.589440.60808NR
no-reference-image-quality-assessment-via-10.490040.562260.62578NR
no-reference-image-quality-assessment-in-the0.248030.311430.32327NR
image-quality-assessment-from-error0.171750.206700.22468FR
Modèle 450.082630.109310.10733FR
topiq-a-top-down-approach-from-semantics-to0.462170.579550.57341FR
maniqa-multi-dimension-attention-network-for0.547440.627330.66613NR
exploring-clip-for-assessing-the-look-and0.526280.651540.65713NR
Modèle 490.110400.146380.14277FR
Modèle 500.264850.369440.34862FR
topiq-a-top-down-approach-from-semantics-to0.506700.576740.62715NR
multiscale-structural-similarity-for-image0.174680.209350.23108FR
shift-tolerant-perceptual-similarity-metric-10.428970.547400.53473FR
learning-a-no-reference-quality-metric-for0.523010.653570.67362NR
q-align-teaching-lmms-for-visual-scoring-via0.586340.711210.71812NR
shift-tolerant-perceptual-similarity-metric-10.458980.564310.57336FR
nima-neural-image-assessment0.203770.265500.25887NR
no-reference-image-quality-assessment-via-10.489010.562770.62496NR
topiq-a-top-down-approach-from-semantics-to0.267740.339400.34092NR
locally-adaptive-structure-and-texture0.412610.532890.51717FR