HyperAI

Video Prediction On Kth

Métriques

Cond
FVD
LPIPS
PSNR
Params (M)
Pred
SSIM
Train

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleCondFVDLPIPSPSNRParams (M)PredSSIMTrain
stochastic-video-generation-with-a-learned10157.90.12923.9122.8400.80010
stochastic-adversarial-video-prediction10--27.77-200.852-
z-order-recurrent-neural-networks-for-video10--27.58-200.817-
decomposing-motion-and-content-for-natural10--26.29-200.806-
convolutional-tensor-train-lstm-for-spatio10-0.19627.62-200.815-
diverse-video-generation-using-a-gaussian-1--------
video-prediction-recalling-long-term-motion10-159.827.5-400.879-
slamp-stochastic-latent-appearance-and-motion10228 ± 50.0795±0.003429.39±0.30-300.8646±0.005010
stochastic-variational-video-prediction10253.50.26025.708.3400.77210
predrnn-a-recurrent-neural-network-for10-0.13928.37-200.839-
stochastic-latent-residual-video-prediction-110222 ± 30.0736±0.002929.69±032-300.8697±0.004610
unsupervised-learning-of-object-structure-and10395.00.12424.292.3400.76610
convolutional-lstm-network-a-machine-learning10-0.23123.58-200.712-
msnet-mutual-suppression-network-for10--27.08-200.876-
stochastic-variational-video-prediction10209.50.23225.878.3400.78210
stochastic-adversarial-video-prediction10145.70.11626.007.3400.80610
varnet-exploring-variations-for-unsupervised10--28.48-200.843-
dynamic-filter-networks10--27.26-200.794-
decomposing-motion-and-content-for-natural10--25.95-200.804-
accurate-grid-keypoint-learning-for-efficient10144.20.09227.112.0400.83710
video-pixel-networks10--23.76-200.746-
stochastic-adversarial-video-prediction10183.70.12623.7917.6400.69910
deep-learning-for-precipitation-nowcasting-a10--26.97-200.790-
folded-recurrent-neural-networks-for-future10--26.12-200.771-
eidetic-3d-lstm-a-model-for-video-prediction10--29.31-200.879-
stochastic-video-generation-with-a-learned10377 ± 60.0923±0.003828.06±0.29-300.8438±0.005410
predrnn-towards-a-resolution-of-the-deep-in10--28.47-200.865-
stochastic-adversarial-video-prediction10374 ± 30.1120±0.003926.51±0.29-300.7564±0.006210
exploring-spatial-temporal-multi-frequency10--29.85-200.893-
stochastic-variational-video-prediction10636 ± 10.2049±0.005328.19±0.31-300.83810
video-prediction-at-multiple-scales-with--0.02927.81--0.951-