Video Anomaly Detection On Shanghaitech 4
Métriques
AUC
RBDC
TBDC
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | AUC | RBDC | TBDC | Paper Title | Repository |
---|---|---|---|---|---|
PGM | 61.28% | 45.4 | 81.87 | Bounding Boxes and Probabilistic Graphical Models: Video Anomaly Detection Simplified | |
VideoPatchCore | 85.1% | - | - | VideoPatchCore: An Effective Method to Memorize Normality for Video Anomaly Detection | |
AnomalyRuler | 85.2% | - | - | Follow the Rules: Reasoning for Video Anomaly Detection with Large Language Models | |
AnyAnomaly | 79.7% | - | - | AnyAnomaly: Zero-Shot Customizable Video Anomaly Detection with LVLM | |
MULDE-frame-centric-micro | 81.3% | - | - | MULDE: Multiscale Log-Density Estimation via Denoising Score Matching for Video Anomaly Detection | |
TSGAD | 80.6% | - | - | An Exploratory Study on Human-Centric Video Anomaly Detection through Variational Autoencoders and Trajectory Prediction | |
MULDE-object-centric-micro | 86.7% | - | - | MULDE: Multiscale Log-Density Estimation via Denoising Score Matching for Video Anomaly Detection |
0 of 7 row(s) selected.