Unsupervised Video Object Segmentation On 4
Métriques
F-measure (Mean)
Ju0026F
Jaccard (Mean)
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | F-measure (Mean) | Ju0026F | Jaccard (Mean) | Paper Title | Repository |
---|---|---|---|---|---|
Propose-Reduce | 73.8 | 70.4 | 67.0 | Video Instance Segmentation with a Propose-Reduce Paradigm | |
AGS | 59.5 | 57.5 | 55.5 | Learning Unsupervised Video Object Segmentation Through Visual Attention | - |
RVOS | 45.7 | 41.2 | 36.8 | RVOS: End-to-End Recurrent Network for Video Object Segmentation | |
STEm-Seg | 67.8 | 64.7 | 61.5 | STEm-Seg: Spatio-temporal Embeddings for Instance Segmentation in Videos | |
PDB | 57.0 | 55.1 | 53.2 | Pyramid Dilated Deeper ConvLSTM for Video Salient Object Detection | - |
ALBA | 60.2 | 58.4 | 56.6 | ALBA : Reinforcement Learning for Video Object Segmentation | |
MATNet | 60.4 | 58.6 | 56.7 | MATNet: Motion-Attentive Transition Network for Zero-Shot Video Object Segmentation | |
DEVA (EntitySeg) | 76.4 | 73.4 | 70.4 | Tracking Anything with Decoupled Video Segmentation | |
UnOVOST | 69.3 | 67.9 | 66.4 | UnOVOST: Unsupervised Offline Video Object Segmentation and Tracking | |
MAST | 67.6 | 65.5 | 63.3 | MAST: A Memory-Augmented Self-supervised Tracker |
0 of 10 row(s) selected.