HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Segmentation sémantique non supervisée avec pré-entraînement image-langue
Unsupervised Semantic Segmentation With 10
Unsupervised Semantic Segmentation With 10
Métriques
mIoU
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
mIoU
Paper Title
Repository
CLS-SEG
35.3
TagCLIP: A Local-to-Global Framework to Enhance Open-Vocabulary Multi-Label Classification of CLIP Without Training
-
ProxyCLIP
39.2
ProxyCLIP: Proxy Attention Improves CLIP for Open-Vocabulary Segmentation
-
TagAlign
33.3
TagAlign: Improving Vision-Language Alignment with Multi-Tag Classification
-
Trident
42.2
Harnessing Vision Foundation Models for High-Performance, Training-Free Open Vocabulary Segmentation
-
TCL
31.6
Learning to Generate Text-grounded Mask for Open-world Semantic Segmentation from Only Image-Text Pairs
-
COSMOS ViT-B/16
31.3
COSMOS: Cross-Modality Self-Distillation for Vision Language Pre-training
-
TTD (TCL)
37.4
TTD: Text-Tag Self-Distillation Enhancing Image-Text Alignment in CLIP to Alleviate Single Tag Bias
-
TTD (MaskCLIP)
26.5
TTD: Text-Tag Self-Distillation Enhancing Image-Text Alignment in CLIP to Alleviate Single Tag Bias
-
MaskCLIP
20.6
Extract Free Dense Labels from CLIP
-
GroupViT (RedCaps)
27.5
GroupViT: Semantic Segmentation Emerges from Text Supervision
-
ReCo
15.7
ReCo: Retrieve and Co-segment for Zero-shot Transfer
-
0 of 11 row(s) selected.
Previous
Next