HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Adaptation non supervisée
Unsupervised Domain Adaptation On Gtav To
Unsupervised Domain Adaptation On Gtav To
Métriques
mIoU
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
mIoU
Paper Title
Repository
DAFormer + ProCST
69.4
ProCST: Boosting Semantic Segmentation Using Progressive Cyclic Style-Transfer
-
BiSMAP (ResNet 101)
61.2
Bidirectional Self-Training with Multiple Anisotropic Prototypes for Domain Adaptive Semantic Segmentation
-
SePiCo
70.3
SePiCo: Semantic-Guided Pixel Contrast for Domain Adaptive Semantic Segmentation
-
HRDA + PiPa
75.6
PiPa: Pixel- and Patch-wise Self-supervised Learning for Domain Adaptative Semantic Segmentation
-
TransDA-B
63.9
Smoothing Matters: Momentum Transformer for Domain Adaptive Semantic Segmentation
-
CAMix (w Deeplabv2 ResNet 101)
55.2
Context-Aware Mixup for Domain Adaptive Semantic Segmentation
-
DIDA
71.0
Dual-level Interaction for Domain Adaptive Semantic Segmentation
-
BiMaL
47.3
BiMaL: Bijective Maximum Likelihood Approach to Domain Adaptation in Semantic Scene Segmentation
-
DAFormer
68.3
DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation
-
Uncertainty
50.3
Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain Adaptive Semantic Segmentation
-
DAFormer + PiPa
71.7
PiPa: Pixel- and Patch-wise Self-supervised Learning for Domain Adaptative Semantic Segmentation
-
CAMix (w DAFormer)
70.0
Context-Aware Mixup for Domain Adaptive Semantic Segmentation
-
MRNet
45.5
Unsupervised Scene Adaptation with Memory Regularization in vivo
-
G2L
59.7
G2L: A Global to Local Alignment Method for Unsupervised Domain Adaptive Semantic Segmentation
-
FAFS
58.8
A Novel Unsupervised Domain Adaption Method for Depth-Guided Semantic Segmentation Using Coarse-to-Fine Alignment
-
MIC
75.9
MIC: Masked Image Consistency for Context-Enhanced Domain Adaptation
-
Uncertainty + Adaboost
50.9
Adaptive Boosting for Domain Adaptation: Towards Robust Predictions in Scene Segmentation
-
Re-EnD-UDA
57.98
Rethinking Ensemble-Distillation for Semantic Segmentation Based Unsupervised Domain Adaptation
-
HRDA
73.8
HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation
-
CLUDA+HRDA
74.4
CLUDA : Contrastive Learning in Unsupervised Domain Adaptation for Semantic Segmentation
-
0 of 20 row(s) selected.
Previous
Next
Unsupervised Domain Adaptation On Gtav To | SOTA | HyperAI