Topic Models On Ag News
Métriques
C_v
NPMI
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | C_v | NPMI | Paper Title | Repository |
---|---|---|---|---|
GSM | 0.41 | 0.03 | Discovering Discrete Latent Topics with Neural Variational Inference | |
vONTSS | 0.49 | 0.054 | vONTSS: vMF based semi-supervised neural topic modeling with optimal transport | |
ProdLDA | 0.32 | -0.22 | Autoencoding Variational Inference For Topic Models | |
vNVDM | 0.44 | 0.028 | Spherical Latent Spaces for Stable Variational Autoencoders | |
NSTM | 0.37 | -0.04 | Neural Topic Model via Optimal Transport | |
ETM | 0.41 | 0.02 | Topic Modeling in Embedding Spaces |
0 of 6 row(s) selected.