HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Classification de séries temporelles
Time Series Classification On Wafer
Time Series Classification On Wafer
Métriques
Accuracy
NLL
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
NLL
Paper Title
Repository
GP-LSTM
0.966
0.105
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
-
MALSTM-FCN
0.99
-
Multivariate LSTM-FCNs for Time Series Classification
-
SNLST
0.981
-
Seq2Tens: An Efficient Representation of Sequences by Low-Rank Tensor Projections
-
GP-GRU
0.994
0.029
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
-
GP-Sig-GRU
0.978
0.081
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
-
GP-Sig
0.965
0.105
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
-
GP-KConv1D
0.984
0.085
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
-
FCN-SNLST
0.989
-
Seq2Tens: An Efficient Representation of Sequences by Low-Rank Tensor Projections
-
GP-Sig-LSTM
0.988
0.048
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
-
R_DST_Ensemble
0.9999513303049968
-
Random Dilated Shapelet Transform: A New Approach for Time Series Shapelets
-
0 of 10 row(s) selected.
Previous
Next
Time Series Classification On Wafer | SOTA | HyperAI