HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Time Series Classification
Time Series Classification On Wafer
Time Series Classification On Wafer
Métriques
Accuracy
NLL
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
NLL
Paper Title
Repository
GP-LSTM
0.966
0.105
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
MALSTM-FCN
0.99
-
Multivariate LSTM-FCNs for Time Series Classification
SNLST
0.981
-
Seq2Tens: An Efficient Representation of Sequences by Low-Rank Tensor Projections
GP-GRU
0.994
0.029
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
GP-Sig-GRU
0.978
0.081
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
GP-Sig
0.965
0.105
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
GP-KConv1D
0.984
0.085
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
FCN-SNLST
0.989
-
Seq2Tens: An Efficient Representation of Sequences by Low-Rank Tensor Projections
GP-Sig-LSTM
0.988
0.048
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
R_DST_Ensemble
0.9999513303049968
-
Random Dilated Shapelet Transform: A New Approach for Time Series Shapelets
0 of 10 row(s) selected.
Previous
Next