HyperAI

Text To Image Generation On Cub

Métriques

FID

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
FID
Paper TitleRepository
TLDM6.72Truncated Diffusion Probabilistic Models and Diffusion-based Adversarial Auto-Encoders
Attention-driven Generator (perceptual loss)-Controllable Text-to-Image Generation
MirrorGAN-MirrorGAN: Learning Text-to-image Generation by Redescription
GALIP10.08GALIP: Generative Adversarial CLIPs for Text-to-Image Synthesis
GAWWN67.22Learning What and Where to Draw-
AttnGAN-AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
AttnGAN+CL16.34Improving Text-to-Image Synthesis Using Contrastive Learning
VQ-Diffusion-F10.32Vector Quantized Diffusion Model for Text-to-Image Synthesis
Lafite10.48LAFITE: Towards Language-Free Training for Text-to-Image Generation
StackGAN-v215.3StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks
Swinv2-Imagen9.78Swinv2-Imagen: Hierarchical Vision Transformer Diffusion Models for Text-to-Image Generation-
VQ-Diffusion-S12.97Vector Quantized Diffusion Model for Text-to-Image Synthesis
StackGAN-v151.89StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks
DM-GAN-DM-GAN: Dynamic Memory Generative Adversarial Networks for Text-to-Image Synthesis
RAT-Diffusion6.36Data Extrapolation for Text-to-image Generation on Small Datasets-
StackGAN-StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks
VQ-Diffusion-B11.94Vector Quantized Diffusion Model for Text-to-Image Synthesis
RAT-GAN10.21Recurrent Affine Transformation for Text-to-image Synthesis
DM-GAN+CL14.38Improving Text-to-Image Synthesis Using Contrastive Learning
DF-GAN-DF-GAN: A Simple and Effective Baseline for Text-to-Image Synthesis
0 of 20 row(s) selected.