Text Classification On R8
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | Accuracy |
---|---|
transformers-are-short-text-classifiers-a | 98.09 |
transformers-are-short-text-classifiers-a | 98.28 |
transformers-are-short-text-classifiers-a | 98.23 |
transformers-are-short-text-classifiers-a | 97.981 |
simple-spectral-graph-convolution | 97.4 |
transformers-are-short-text-classifiers-a | 96.13 |
simplifying-graph-convolutional-networks | 97.2 |
distributed-word-representation-in-tsetlin | 97.50 |
graph-star-net-for-generalized-multi-task-1 | 97.4 |
transformers-are-short-text-classifiers-a | 96.98 |
transformers-are-short-text-classifiers-a | 98.041 |
transformers-are-short-text-classifiers-a | 98.451 |
neural-attentive-bag-of-entities-model-for | 97.1 |
text-level-graph-neural-network-for-text | 97.8 |
graph-convolutional-networks-for-text | 97.07 |
simplifying-graph-convolutional-networks | 97.2 |
transformers-are-short-text-classifiers-a | 98.171 |
representation-learning-of-entities-and | 96.7 |
bertgcn-transductive-text-classification-by | 98.2 |
convtexttm-an-explainable-convolutional | 96.4 |
transformers-are-short-text-classifiers-a | 97.62 |