HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Synthetic To Real Translation
Synthetic To Real Translation On Synthia To 1
Synthetic To Real Translation On Synthia To 1
Métriques
MIoU (13 classes)
MIoU (16 classes)
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
MIoU (13 classes)
MIoU (16 classes)
Paper Title
Repository
MetaCorrection(ResNet-101)
52.5
45.1
MetaCorrection: Domain-aware Meta Loss Correction for Unsupervised Domain Adaptation in Semantic Segmentation
TransDA-B
66.3
59.3
Smoothing Matters: Momentum Transformer for Domain Adaptive Semantic Segmentation
DACS(ResNet-101)
54.81
48.34
DACS: Domain Adaptation via Cross-domain Mixed Sampling
DCF
75.9
69.3
Transferring to Real-World Layouts: A Depth-aware Framework for Scene Adaptation
HRDA
72.4
65.8
HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation
EHTDI
64.6
57.8
Exploring High-quality Target Domain Information for Unsupervised Domain Adaptive Semantic Segmentation
AdaptSegNet(Multi-level)
46.7
-
Learning to Adapt Structured Output Space for Semantic Segmentation
SePiCo
71.4
64.3
SePiCo: Semantic-Guided Pixel Contrast for Domain Adaptive Semantic Segmentation
-
CLUDA+HRDA
-
67.2
CLUDA : Contrastive Learning in Unsupervised Domain Adaptation for Semantic Segmentation
FADA(ResNet-101)
52.5
45.2
Classes Matter: A Fine-grained Adversarial Approach to Cross-domain Semantic Segmentation
MIC
74.0
67.3
MIC: Masked Image Consistency for Context-Enhanced Domain Adaptation
CAMix (w DAFormer)
69.2
-
Context-Aware Mixup for Domain Adaptive Semantic Segmentation
CAG-UDA
52.6
44.5
Category Anchor-Guided Unsupervised Domain Adaptation for Semantic Segmentation
ProDA(ResNet-101)
62.0
55.5
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation
CAMix (ResNet 101)
59.7
-
Context-Aware Mixup for Domain Adaptive Semantic Segmentation
CLAN
47.8
-
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation
Uncertainty + Adaboost (ResNet-101)
57.5
50.4
Adaptive Boosting for Domain Adaptation: Towards Robust Predictions in Scene Segmentation
G2L
64.4
56.8
G2L: A Global to Local Alignment Method for Unsupervised Domain Adaptive Semantic Segmentation
-
IAST(ResNet-101)
57.0
49.8
Instance Adaptive Self-Training for Unsupervised Domain Adaptation
ITEN
-
46.45
Exploiting Image Translations via Ensemble Self-Supervised Learning for Unsupervised Domain Adaptation
-
0 of 36 row(s) selected.
Previous
Next