HyperAI

Speech Recognition On Aishell 1

Métriques

Params(M)
Word Error Rate (WER)

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleParams(M)Word Error Rate (WER)
unified-streaming-and-non-streaming-two-pass474.72
cr-ctc-consistency-regularization-on-ctc-for66.24.02
funasr-a-fundamental-end-to-end-speech46.34.95
qwen-audio-advancing-universal-audio-1.29
lightweight-transducer-based-on-frame-level45.34.03
funasr-a-fundamental-end-to-end-speech2201.95
end-to-end-speech-recognition-with-adaptive-18.7
improving-mandarin-speech-recogntion-with464.1
a-comparative-study-on-transformer-vs-rnn-in-6.7
cat-a-ctc-crf-based-asr-toolkit-bridging-the-6.34
unimodal-aggregation-for-ctc-based-speech44.74.7
mmspeech-multi-modal-multi-task-encoder-1.9
knowledge-transfer-from-pre-trained-language474.1
beyond-universal-transformer-block-reusing8.56.63
fireredasr-open-source-industrial-grade1,1000.55
seed-asr-understanding-diverse-speech-and-0.68
lightweight-transducer-based-on-frame-level45.34.31
bat-boundary-aware-transducer-for-memory904.97