HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Speaker Diarization
Speaker Diarization On Callhome
Speaker Diarization On Callhome
Métriques
DER(ig olp)
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
DER(ig olp)
Paper Title
Repository
PLDA+AHC (Oracle SAD)
8.39
Auto-Tuning Spectral Clustering for Speaker Diarization Using Normalized Maximum Eigengap
COS+NME-SC (Oracle SAD)
7.29
Auto-Tuning Spectral Clustering for Speaker Diarization Using Normalized Maximum Eigengap
COS+B-SC (Oracle SAD)
8.78
Auto-Tuning Spectral Clustering for Speaker Diarization Using Normalized Maximum Eigengap
COS+AHC (Oracle SAD)
-
Auto-Tuning Spectral Clustering for Speaker Diarization Using Normalized Maximum Eigengap
SA-EEND (2-spk, no-adapt)
-
End-to-End Neural Speaker Diarization with Self-attention
SA-EEND (2-spk, adapted)
-
End-to-End Neural Speaker Diarization with Self-attention
TOLD
7.37
TOLD: A Novel Two-Stage Overlap-Aware Framework for Speaker Diarization
EEND-OLA
9.14
TOLD: A Novel Two-Stage Overlap-Aware Framework for Speaker Diarization
COS+NJW-SC (Oracle SAD)
-
Auto-Tuning Spectral Clustering for Speaker Diarization Using Normalized Maximum Eigengap
EEND
-
End-to-End Neural Speaker Diarization with Permutation-Free Objectives
0 of 10 row(s) selected.
Previous
Next