HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
SMAC
Smac On Smac 6H Vs 8Z 1
Smac On Smac 6H Vs 8Z 1
Métriques
Median Win Rate
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Median Win Rate
Paper Title
Repository
IQL
0
The StarCraft Multi-Agent Challenge
-
VDN
0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
Heuristic
0
The StarCraft Multi-Agent Challenge
-
DDN
83.92
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
QMIX
3
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
-
QMIX
12.78
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
ACE
93.75
ACE: Cooperative Multi-agent Q-learning with Bidirectional Action-Dependency
-
VDN
0
The StarCraft Multi-Agent Challenge
-
QPLEX
-
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
QMIX
3
The StarCraft Multi-Agent Challenge
-
DMIX
49.43
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DPLEX
43.75
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
IQL
0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DIQL
0.00
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
0 of 14 row(s) selected.
Previous
Next