HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
SMAC
Smac On Smac 27M Vs 30M
Smac On Smac 27M Vs 30M
Métriques
Average Score
Median Win Rate
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Average Score
Median Win Rate
Paper Title
Repository
DMIX
19.43
85.45
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
VDN
18.45
63.12
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DIQL
14.45
6.02
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
QMIX
19.41
84.77
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
Heuristic
-
0
The StarCraft Multi-Agent Challenge
-
DDN
19.71
91.48
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
QPLEX
19.33
78.12
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
DPLEX
19.62
90.62
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
IQL
14.01
2.27
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
QMIX
-
49
The StarCraft Multi-Agent Challenge
-
QMIX
-
49
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
-
0 of 11 row(s) selected.
Previous
Next
Smac On Smac 27M Vs 30M | SOTA | HyperAI