HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Smac 1
Smac On Smac Off Complicated Parallel
Smac On Smac Off Complicated Parallel
Métriques
Median Win Rate
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Median Win Rate
Paper Title
Repository
IQL
35.0
-
-
MASAC
0.0
Decomposed Soft Actor-Critic Method for Cooperative Multi-Agent Reinforcement Learning
DRIMA
100
Disentangling Sources of Risk for Distributional Multi-Agent Reinforcement Learning
-
DMIX
0.0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
QMIX
0.0
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
COMA
0.0
Counterfactual Multi-Agent Policy Gradients
DDN
0.0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
VDN
70.0
Value-Decomposition Networks For Cooperative Multi-Agent Learning
DIQL
0.0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
QTRAN
0.0
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning
0 of 10 row(s) selected.
Previous
Next