HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Smac 1
Smac On Smac Def Infantry Sequential
Smac On Smac Def Infantry Sequential
Métriques
Median Win Rate
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Median Win Rate
Paper Title
Repository
DRIMA
100
Disentangling Sources of Risk for Distributional Multi-Agent Reinforcement Learning
-
DIQL
93.8
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DDN
90.6
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DMIX
100
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
MADDPG
100
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
QTRAN
100
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning
IQL
93.8
The StarCraft Multi-Agent Challenges+ : Learning of Multi-Stage Tasks and Environmental Factors without Precise Reward Functions
QMIX
96.9
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
COMA
28.1
Counterfactual Multi-Agent Policy Gradients
MASAC
37.5
Decomposed Soft Actor-Critic Method for Cooperative Multi-Agent Reinforcement Learning
VDN
96.9
Value-Decomposition Networks For Cooperative Multi-Agent Learning
0 of 11 row(s) selected.
Previous
Next