HyperAI

Sign Language Recognition On Rwth Phoenix

Métriques

Word Error Rate (WER)

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleWord Error Rate (WER)
007-democratically-finding-the-cause-of23.4
multimodal-locally-enhanced-transformer-for20.89
subunets-end-to-end-hand-shape-and-continuous40.7
context-matters-self-attention-for-sign29.7
visual-alignment-constraint-for-continuous22.1
signbert-hand-model-aware-self-supervised-pre20
a-deep-neural-framework-for-continuous-sign22.86
connectionist-temporal-fusion-for-sign37.8
c2slr-consistency-enhanced-continuous-sign20.4
two-stream-network-for-sign-language18.4
multi-stream-keypoint-attention-network-for22.1
continuous-sign-language-recognition-with19.4
stochastic-fine-grained-labeling-of-multi25.3
slowfast-network-for-continuous-sign-language18.3
dense-temporal-convolution-network-for-sign36.5
continuous-sign-language-recognition-through24.0
self-mutual-distillation-learning-for20.5
spatial-temporal-multi-cue-network-for20.7
tcnet-continuous-sign-language-recognition18.9
deep-radial-embedding-for-visual-sequence20.2