HyperAI

Sequential Image Classification On Sequential 1

Métriques

Unpermuted Accuracy

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleUnpermuted Accuracy
efficiently-modeling-long-sequences-with-191.80%
smpconv-self-moving-point-representations-for84.86%
learning-longer-term-dependencies-in-rnns62.2%
recursive-construction-of-stable-assemblies65.72
sequence-modeling-with-multiresolution93.15%
combining-recurrent-convolutional-and84.65%
ckconv-continuous-kernel-convolution-for63.74%
resurrecting-recurrent-neural-networks-for89.0
lipschitz-recurrent-neural-networks64.2
flexconv-continuous-kernel-convolutions-with-180.82%
trellis-networks-for-sequence-modeling73.42%
improving-the-gating-mechanism-of-recurrent-174.4%
ckconv-continuous-kernel-convolution-for62.25%